Predicting and identifying traffic hot spots applying neuro - fuzzy systems in intercity roads *
نویسنده
چکیده
Providing safety in roads for the purpose of protecting human assets and preventing social and economic losses resulted from road accidents is a significant issue. Identifying the traffic hot spots of the roads provides the possibility of promoting the road safety which is also related to investigate frequency and intensity of occurred accidents. Accidents are multidimensional and complicated events. Identifying the accident factors is based on applying a comprehensive and integrated system for making decisions. Therefore, applying common mathematical and statistical methods in this field can be resulted in some problems. Hence, the new research methods with abilities to infer meaning from complicated and ambiguous data seem useful. Therefore, along with identifying the traffic hot spots, adaptive Neuro-Fuzzy inference system is used to predict traffic hot spots on rural roads. In this process, a fuzzy inference system from Sugeno type is trained applying hybrid optimization routine (back propagation algorithm in combination with a least square type of method) and accident data of Karaj-Chalus road in Tehran Province. Then the system was tested by a complete set of data. Finally, the stated system could predict 96.85 % of accident frequencies in the studied blocks. Furthermore, the amount of effective false negative in all cases included only 0.82 % of predictions, which indicated a good approximation of predictions and model credibility.
منابع مشابه
The Assessment of Applying Chaos Theory for Daily Traffic Estimation
Road traffic volumes in intercity roads are generally estimated by probability functions, statistical techniques or meta-heuristic approaches such as artificial neural networks. As the road traffic volumes depend on input variables and mainly road geometrical design, weather conditions, day or night time, weekend or national holidays and so on, these are also estimated by pattern recognition te...
متن کاملA neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country
Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...
متن کاملAdaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملPredicting Packet Transmission Data over IP Networks Using Adaptive Neuro-Fuzzy Inference Systems
Problem statement: The statistical modeling for predicting network traffic has now become a major tool used for network and is of significant interest in many domains: Adaptive application, congestion and admission control, wireless, network management and network anomalies. To comprehend the properties of IP-network traffic and system conditions, many kinds of reports based on measured network...
متن کاملPredicting Hot Spots of Herpetofauna Road Mortality Along Highway Networks
Road mortality is often spatially aggregated, and there is a need for models that accurately and efficiently predict hot spots within a road network for mitigation. We surveyed 145 points throughout a 353-km highway network in New York State, USA, for roadkill of reptiles and amphibians. We used land cover, wetland configuration, and traffic volume data to identify features that best predicted ...
متن کامل